3.73 \(\int \frac{1+x^2}{1+x^2+x^4} \, dx\)

Optimal. Leaf size=38 \[ \frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{\sqrt{3}}-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

[Out]

-(ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3]) + ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3]

________________________________________________________________________________________

Rubi [A]  time = 0.0270838, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {1161, 618, 204} \[ \frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{\sqrt{3}}-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^2)/(1 + x^2 + x^4),x]

[Out]

-(ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3]) + ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1+x^2}{1+x^2+x^4} \, dx &=\frac{1}{2} \int \frac{1}{1-x+x^2} \, dx+\frac{1}{2} \int \frac{1}{1+x+x^2} \, dx\\ &=-\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )-\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=\frac{\tan ^{-1}\left (\frac{-1+2 x}{\sqrt{3}}\right )}{\sqrt{3}}+\frac{\tan ^{-1}\left (\frac{1+2 x}{\sqrt{3}}\right )}{\sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 0.195295, size = 99, normalized size = 2.61 \[ \frac{\left (\sqrt{3}-i\right ) \tan ^{-1}\left (\frac{x}{\sqrt{\frac{1}{2} \left (1-i \sqrt{3}\right )}}\right )}{\sqrt{6 \left (1-i \sqrt{3}\right )}}+\frac{\left (\sqrt{3}+i\right ) \tan ^{-1}\left (\frac{x}{\sqrt{\frac{1}{2} \left (1+i \sqrt{3}\right )}}\right )}{\sqrt{6 \left (1+i \sqrt{3}\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^2)/(1 + x^2 + x^4),x]

[Out]

((-I + Sqrt[3])*ArcTan[x/Sqrt[(1 - I*Sqrt[3])/2]])/Sqrt[6*(1 - I*Sqrt[3])] + ((I + Sqrt[3])*ArcTan[x/Sqrt[(1 +
 I*Sqrt[3])/2]])/Sqrt[6*(1 + I*Sqrt[3])]

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 34, normalized size = 0.9 \begin{align*}{\frac{\sqrt{3}}{3}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) }+{\frac{\sqrt{3}}{3}\arctan \left ({\frac{ \left ( 1+2\,x \right ) \sqrt{3}}{3}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)/(x^4+x^2+1),x)

[Out]

1/3*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))+1/3*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.4882, size = 45, normalized size = 1.18 \begin{align*} \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1))

________________________________________________________________________________________

Fricas [A]  time = 1.28342, size = 109, normalized size = 2.87 \begin{align*} \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (x^{3} + 2 \, x\right )}\right ) + \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3} x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(x^3 + 2*x)) + 1/3*sqrt(3)*arctan(1/3*sqrt(3)*x)

________________________________________________________________________________________

Sympy [A]  time = 0.105415, size = 41, normalized size = 1.08 \begin{align*} \frac{\sqrt{3} \left (2 \operatorname{atan}{\left (\frac{\sqrt{3} x}{3} \right )} + 2 \operatorname{atan}{\left (\frac{\sqrt{3} x^{3}}{3} + \frac{2 \sqrt{3} x}{3} \right )}\right )}{6} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)/(x**4+x**2+1),x)

[Out]

sqrt(3)*(2*atan(sqrt(3)*x/3) + 2*atan(sqrt(3)*x**3/3 + 2*sqrt(3)*x/3))/6

________________________________________________________________________________________

Giac [A]  time = 1.12416, size = 35, normalized size = 0.92 \begin{align*} \frac{1}{6} \, \sqrt{3}{\left (\pi \mathrm{sgn}\left (x\right ) + 2 \, \arctan \left (\frac{\sqrt{3}{\left (x^{2} - 1\right )}}{3 \, x}\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1),x, algorithm="giac")

[Out]

1/6*sqrt(3)*(pi*sgn(x) + 2*arctan(1/3*sqrt(3)*(x^2 - 1)/x))